
1

Dynamic Routing of Circuits and Cells

David Bookstaber1

Abstract

This project investigates methods of routing data through a nonhierarchical network

based on fixed “policies.” The motivation is the standard telephone network used in the United

States, which depends on setting up a circuit between two nodes in order to accommodate a call

between them. The goal of any routing methodology is to accommodate as many calls as

possible, since rejecting any call represents a loss of revenue to the network. A dynamic routing

policy consists of an ordered list of routes between each node pair on the network. When a call

arrives, the network accepts it on the first unblocked route it finds, and rejects it if all routes in its

list are full.

This project concentrates on the work of Denardo & Park, who invent a routing method

that assigns a cost to each link in the network, prices routes as the sum of the costs of their links,

and chooses routes with the lowest cost. They present an efficient algorithm for generating such

optimized routing policies, and prove that its results are optimal. However, their work does not

address newer digital networks that send data in cells (fixed-length packets) instead of

demanding an uninterrupted circuit to carry a call. In practice, these Asynchronous Transfer

Mode (ATM) networks can carry more calls than circuit networks, while providing virtually the

same quality of service. This project compares the properties of circuit and ATM networks, and

shows that the routing methodology of Denardo & Park is applicable to the latter.

Introduction to Circuit Networks

A telecommunications network consists of nodes connected by undirected links. Each

link has a fixed capacity, T, which is the maximum number of calls it can carry. Calls arrive at

random between pairs of nodes. The network must either accept each call by opening a circuit

along some route of links between the nodes, or else reject the call. Rejection of a call, or loss,

1 Computer Science & Mathematics Senior Project report, Spring 1999. Advised by Eric Denardo.

2

typically occurs either because all of the routes have some link that is already at capacity

(blocked), or because accepting the call would probably cause the rejection of more than one

other call. Our goal is to minimize the expected number of calls lost across the entire network.

For a phone company, this means carrying as many calls as possible on the installed hardware,

since each call generates revenue. In that sense, a rejected call is lost revenue, and an

underutilized network is a waste of money.

Traffic routing on U.S. telecommunications networks is done according to preplanned

routing tables, which may be changed every hour and recalculated every week.2 Under such

dynamic routing paradigms, a routing policy is a series of routes defined for each node-pair that

are tried in a specific order when a call arrives on that node-pair. We deal with nonhierarchical

networks, which consist of nodes that are logically fully connected and functionally equal, so

that there exists a direct route between all node-pairs. This direct route is always chosen first if

possible. Only if it is blocked are alternative routes involving more than one link tried.3

Routing policies are optimized for a specific network, which consists of a set of nodes,

links, and Poisson demands for service (calls) between node-pairs. Following convention, only

one- and two-link routes are considered between node-pairs. It has been shown that allowing

more complex routes does not significantly decrease loss rates. Obviously, the routing problem

is only interesting for busy networks, and if the network is very busy it would be unwise to use

many links to satisfy a single call when each link could potentially serve its own call. Ash

confirms that, in practice, multi-link networks route about 98% of their traffic on one- and two-

link paths. He attributes this also to costs inherent in switching. Note also that considering

routes of greater than two links would vastly increase the complexity of the problem, since routes

for the same node-pair could share links.

The dynamic routing methods treated here are not sensitive to immediate loads on the

network, but see only whether a route is blocked or not. This corresponds to the DNHR

(Dynamic Nonhierarchical Routing) hardware AT&T used on its networks in the 1980s. More

recently, AT&T has adopted a Real-Time Network Routing (RTNR) system that is more

sensitive to the state of the network, but which requires more intelligent switching hardware.

2 Ash, p.23
3 This nondependence on a single fixed route is critical to the ability of networks to respond to local failures or
traffic surges.

3

Optimized Circuit Routing

Denardo & Park solve the problem of finding an optimal routing policy by a process of

“decentralization,” wherein the cost of routes is determined from the sum of the cost of their

links. Instead of examining each route at each possible network load, they calculate the expected

marginal decrease in revenue from accepting a call on a single link. Thus, the cost of accepting a

call is the sum of the costs of assigning another call to each link, where the cost of adding a call

to a link is the expected number of calls that will be rejected as a result. Obviously, calls are

assigned to the cheapest route available, and offered no route that would in probability cause the

rejection of more than one other call.

We make the following three assumptions about the circuit network:

• Call attempts on each node-pair α are independent and Poisson with a mean call rate of αλ .

• Call durations are i.i.d. with mean 1/µ.

• Link behavior is independent of other links. (Obviously, this is an approximation since

traffic on routes consisting of more than one link correlates their behavior. However,

Denardo and others verify by simulation that this assumption underestimates the network

reject rate by only a few percent.)

Routing policies vary with the network load. In order to compute an optimal routing

policy, we will first examine an individual link to determine the marginal effect on the rejection

rate of accepting a call. Then we will be equipped to define and analyze routing policies. Our

goal will be to find fixed points of policies, which describe their steady-state effect on the

network. In order to do this, we will first see how a policy transforms arrival rates on a network,

then how to determine whether a fixed point exists, and finally how to construct an optimal

policy and find its fixed point. In the process, we will learn about the behavior of networks.

4

How much does the expected rejection rate of a link increase if another call is accepted?

For a link i, the probability iN = iT (usage = capacity) that the link is full is the Erlang

probability ρ. That is, blocking probability on a specific link with capacity T and call rate4 A is

given by

ρ = ()
()∑

=

T

n

nA

TA

n
T

0 !
! µ

µ .5

Thus the expected increase in rejection rate if another call is accepted on the link now is given by

 −

−
=

µρ
ρ AT

ATE
1

),(,

which is known as the Erlang improvement formula. In other words, at any moment accepting

another call is expected to cause the rejection of E future calls on that link. (A few notes

regarding this equation: This value is useful in designing network capacities—“Moe’s principle”

dictates that links should be sized so that their E values are equal. E × (A/µ) = decrease in reject

rate when link’s capacity is increased from T – 1 to T. Denardo & Park provide a proof using

Markov chains that this incremental cost of assigning a call to a link, E, depends only on the

mean of call service times, 1/µ.6 They also prove that E accurately describes the effect on the

rejection rate if the arrival rate is perturbed by ε.)

DEFINING A ROUTING POLICY

As already described, a routing policy consists of an ordered sequence of routes to be

tried for each node-pair in the network. Given a policy, we want to find the actual arrival rates A

it produces in the steady state of the network—i.e., what the policy actually does. We will

describe policies by an operator f that maps arrival vectors A Æ A’. Therefore, we want to find

the fixed point of f—the steady-state arrival rates.

4 In what follows, we will not always be interested in the raw call rates between node pairs, λ. Because our routing
policy will displace these calls along different links, we will look instead at actual arrival rates A on each link under
the policy. We will see later how to calculate A.
5 This formula is also called the Erlang loss formula, and was proven by A. K. Erlang in 1917.
6 Both Denardo and Ross prove that the steady-state probabilities in a network depend only on the mean of the call
durations.

5

How do we evaluate f(A)?

A policy δ is an ordered list of routes {ir } for each node-pair α. The policy puts a call on

the first unblocked route in the list. Given a vector A of arrival rates for each link, the

probability of a particular route being used by a call on α is given by the “Offer” probability,

)]|(1)[()(11 ArPrOrO kkk −− −= δδ , αδ∈r ,

which is “the probability of an offer being made on the previous route times the probability it

was rejected.” Here, P(r | A) is “the probability route r is not blocked given arrival rates A.”

Referring back to the Erlang probability, it is clear that this is the product of the probability of

each link in the route being unblocked—i.e.,

∏ ∈
−=

rj jArP)1()|(ρ .

Again, the value of ρ depends on the arrival rates given by A, and the ordering of the routes r in

the probability O depends on the ordering given by the policy δ. Given these probabilities and

the raw call rates λ we can calculate f(A) link by link, since for each link i we have

∑ ∈ −
=

iRr
i

ri

ArP
rOAf

ρ
λ δ

α
δ

1
)|(

)()]([)(.

This sums the offer rate on a route times the probability of link i blocking the route, over all

routes r that include link i, giving us a new vector of arrival rates.

How do we know if a fixed point exists?

This question forces us to consider the effects of rerouting induced by adding a call to the

network. In order to do so, we need to define a few variables that describe what happens to a call

when it is rerouted. Our aim with these definitions is the construction of a reroute matrix Γ that

describes how incremental traffic is routed around the network. By analyzing the properties of

this matrix, we can determine whether the network has a fixed point.

First, calculate the rate at which call attempts are blocked on route r because of link i,

i
ri

rP
rOr

ρ
λλ δ

α −
=Λ

1
)|(

)()()(.

)(riΛ , then, is “the call rate on the node-pair served by r, times the probability of the call being

offered on route r, times the probability that all links in route r are unblocked except link i.”

6

We will also need to know, given that link i has blocked a call, that the probability the

call was attempted on route iRr ∈ is

∑ ∈
Λ

Λ=
iRs i

i
i s

r
rQ

)(
)(

)(.

Now we can define the probability of a blocked call on a route r being passed to another

route s. We say that rs
δ
> if policy δ ranks route s after route r. Thus, the probability that a call

blocked on route r due to link i is actually assigned to route s is

∏ >>
−=

rtstii tPsPrQsr δδγ
:

)](1[)()(),(for rs
δ
> .

In other words,),(sriγ is “the probability a call is blocked on route r due to link i, times the

probability route s is unblocked, times the probability every route ranked after r but before s is

blocked.”

Finally, we need to consider the blocking probability of calls blocked on i. This is

∑ ∏∈ >
−=

iRr rsii sPrQ δβ)](1[)(,

the probability of losing a call, given that it was blocked on link i, because all other routes listed

by the policy are also blocked. Thus the immediate effect of assigning a call to link i is to

increase the expected number of future calls that will not only be blocked on link i, but also

completely lost, by

iii E βτ = .

To answer our original question, we need to determine the cumulative effect on the

network of adding traffic to a link. Obviously, rerouting from a blocked route to another one

may in turn cause other calls to be rerouted that wouldn’t otherwise. In order to analyze this

effect, we will construct a reroute matrix Γ, whose ijth entry is “the expected change in the

number of future calls that will be assigned to routes that include link j due directly to rerouting

the calls that will be blocked on link i, because one call was assigned to link i while it was

unblocked.” The matrix is produced by the following

7

Algorithm to compute the reroute matrix Γ:

1. Set 0=Γij .

2. For each link i, each route iRr ∈ , each route rs
δ
> , and each j ∈ s,

),(srE iiijij γ+Γ←Γ

3. For each link i, each route iRr ∈ , and each link j ∈ r \ i,

)(rQE iiijij −Γ←Γ .

The algorithm considers the following: Assigning a call to link i while that link is unblocked

increases the expected number of future calls that link i will block by iE . Each of these future

calls had been assigned to route iRr ∈ with probability)(rQi and will be reassigned to route

rs
δ
> with probability),(sriγ . Thus, for each rs

δ
> , the traffic on each link j ∈ s is expected to

increase by),(srE iiγ . At the same time, the traffic on all the other links in route r is expected to

decrease by)(rQE ii .

This construction of Γ facilitates an analysis of rerouting across the entire network. Since

the ijth entry of Γ describes the increase of traffic to link j due to an increase on link i, the ijth

entry of Γ² describes the second-degree effects on j of an increase on link i—i.e., the traffic

rerouted over j from various routes that had traffic increased due to the increase on i. The call

losses at each stage are given by the vectors τ, Γτ, Γ²τ, etc. Therefore, the cumulative loss of

calls across the network is described by (I + Γ + Γ² + …)τ.

A square matrix Γ is transient if 0→Γk as ∞→k . Under these conditions, the matrix

(I – Γ) has an inverse, and by calculus we know that

D = (I – Γ)-1 = I + Γ + Γ² + ….

So, the matrix D describes the expected number of calls that will be assigned to link j due to the

assignment of one call to link i while i is unblocked. Furthermore, |Dτ | is the expected number

of calls that will be lost from the network due to this assignment.

The properties of these matrices are important to understanding a routing policy. For

example, if Γ weren’t transient, assigning a single additional call to an unblocked link could

cause an avalanche of rerouted traffic. I.e., rerouting that call would cause another two calls to

8

be rerouted, which would block even more calls, and so forth. Under such conditions, a policy

has no fixed point. However, if Γ is transient a fixed point exists. Furthermore, when

calculating a fixed point we are concerned with the rate of convergence of rerouted traffic. This

is determined by the largest eigenvalue (in absolute value) of Γ—its spectral radius. Therefore,

we might expect numerical difficulties in computing a fixed point if the spectral radius of Γ is

not significantly less than one.

How do we construct an optimal policy?

We want to find the policy that minimizes the system-wide reject rate. For a policy

δ with fixed point δA this is given by ∑ ∏ ∈
−

α δ
δ

α
α

λ])|(1([
r

ArP , where αδ is the set of ranked

routes listed by the policy for node-pair α. Denardo & Park minimize the reject rate through a

decentralized measure of cost—they assign a cost to each link, and let the cost of a route be the

sum of the costs of its links. Based on our derivations in the previous section, it is clear that the

cost of a link i is

∑
=

=
L

j
jijiC

1

τD .

iC , then, is “the expected number of calls that will be lost due to the assignment of one call to a

route that includes link i.” Clearly, no call should be assigned to a route whose cost exceeds one.

Denardo proves that ranking routes according to cost in this manner achieves a minimal network-

wide loss of calls.

How do we find a fixed point of f?

Denardo & Park execute an algorithm that starts with a simple problem and slowly

increases its complexity to accommodate the complete network. This process of successive

approximation begins with a policy that uses only single-link routes, for which it is easy to

compute blocking probabilities (since they are just the Erlang probabilities for each link). Then a

small fraction of the traffic is allowed to use multi-link routes, and the policy is re-optimized.

The process continues, allowing more and more traffic to use multi-link routes. Each step begins

with the computation of the fixed point for the policy determined in the previous step. Then the

policy’s reroute matrix and cost vectors are computed. Finally, for each node-pair a policy is

9

selected that ranks routes in increasing order of cost, and that lists no route with a cost greater

than one.

This process naturally produces cyclic routing policies, which is what dynamic routing

networks often use in practice.7 It is worth noting that on a six-node, totally-connected model

network used by AT&T, Denardo’s implementation computes an optimal policy in just a few

seconds.8 This algorithm is ()MLRTO i ⋅⋅+∑ , where R is the number of routes considered, L is

the number of links, and 1/M is the fraction of traffic opened to multi-link routes each step

(resulting in a cyclic policy of period M). The first term accounts for the calculation of Erlang

probabilities for each link. The second term accounts for the calculation of offer probabilities

and the transformation of arrival rates by the new policy, and also covers the computation of the

reroute matrix. These are the most expensive operations involved in the process.

Introduction to ATM

AT&T recently announced that by the end of this year, it would stop buying traditional

telephone switches. Instead it, like all other major telecommunications network providers, is

switching to networks that rely on Asynchronous Transfer Mode (ATM) technology. Frank

Ianna, president of AT&T’s network unit, said of ATM, “If analog was the first generation and

digital switching was the second and digital transmission was the third, this is the fourth.” 9

Instead of a circuit, a call on an ATM network establishes a Virtual Circuit (VC; also

Virtual Channel) along which it can send data cells of 53 bytes.10 Links in an ATM network

consist of multiplexers that combine the numerous VCs on the link into a single stream of data

no larger than the link’s capacity, or bandwidth. The advantages of using cells instead of circuits

include the ability to use channels of varying capacity, and to pack data more tightly. In practice,

digital services that use these networks—voice, video, data—have variable data rates, especially

after compression. Therefore, while calls have a peak rate at which they may carry data,11 they

7 Ash, p.27
8 A more brute-force, applied algorithm for calculating fixed points is provided by Ash, who couples linear
programming with flow models of the network to make candidate paths converge on optimal routing schemes. Ross
also gives several approximation algorithms. However, these algorithms can take orders of magnitude longer than
Denardo & Park’s to reasonably converge. (Ash, Chapters 4 & 6; Ross, Chapter 7)
9 “AT&T’s Embrace of New Technology Signals Next Era,” New York Times, 8 March 1999, C1.
10 Typically, 5 bytes of a cell are used for routing, error correction, and other “non-payload” data.
11 In the case of standard voice service, this maximum rate is 64kbps.

10

do not transmit at this peak rate for their entire duration. For example, voice calls have frequent

periods of silence during which no data needs to be sent. ATM networks do not carry any data

during these periods, which frees up bandwidth for other calls.12

The qualities of VCs vary by service type. Thus, where circuit network calls consist of a

single service that uses a fixed unit of bandwidth, ATM calls can have widely varying

characteristics, including different requirements for peak data rates and different distributions of

cell transmission rates over the course of a call. Another property of ATM calls that can vary by

service type is the Quality of Service (QoS) requirements, which consist of the maximum

allowable cell delay and cell loss. For example, while a voice conversation would be sensitive to

cell delays of more than a few milliseconds, a few cells could be lost without a listener noticing.

In contrast, a wide area computer network allows for delays on the order of seconds, but cannot

afford to lose any cells of data.

Optimized ATM Routing

The most simple ATM routing method—peak-rate admission—reduces readily to the

circuit method of Denardo & Park already described. In this case, a route is considered blocked

if adding a particular VC would cause the sum of the peak rates of its VCs to exceed its capacity.

This ensures that a link can carry all of its calls without delaying or losing any cells. However, it

does not provide any improvement in service over the simple circuit network. In fact, in this

case we can theoretically transform ATM to circuits by quantizing call sizes and circuits: The

VC with the smallest peak rate would behave like a standard circuit call, and VCs with peak rates

c times greater would behave like c simultaneous calls.13 Something like this is used in a

technique called multirate circuit switching, and it has the advantage over peak-rate ATM of not

consuming 10% of its bandwidth with non-payload data. Still, ATM is more easily adapted to

accommodate new services and bandwidth requirements, and ATM technology is superceding

that of multirate circuit switching.

12 One can observe this by listening carefully to a call made with current digital cellular telephones, for example.
13 This does not truly match the circuit model because the call arrival rates would not be strictly independent—a
high-bandwidth service would be simulated by the simultaneous arrival of several calls. While the consequences are
probably not significant in practice, this is not considered further here because the real benefits of ATM are
presented in what follows.

11

The real benefits of ATM are reaped by considering a more relaxed demand

characteristic of calls, referred to as effective bandwidth. Here, some measure of the average

data transmission rate of calls is calculated. A method that uses this value will admit calls as

long as their cumulative effective bandwidth doesn’t exceed the link’s capacity. Since effective

bandwidth is generally less than the peak bandwidth consumption of a call, this method will

allow more calls to be carried than a standard circuit network. However, such a strategy

jeopardizes QoS properties of the calls since, in the worst case, it is possible for all calls on a link

to simultaneously demand their peak bandwidth, causing the link to delay or lose cells. Thus, we

face a tradeoff between accepting more calls and ensuring QoS. The calculation of effective

bandwidth is undertaken for each service to satisfy performance preferences in this tradeoff.

Since different types of calls have different demands for bandwidth and QoS, ATM

networks can employ a strategy for service separation wherein all calls with the same properties

(i.e., providing the same service) are logically combined in a single buffer. In this way, a link

can divide its bandwidth over many service types, but the analysis of blocking probabilities

becomes more tractable because each service is examined independently. Consider the

following illustration: A link with capacity 100 carries 30 units of voice calls and 65 units of

data. Given 30 units of voice bandwidth, this network is carrying 35 voice calls while ensuring

minimal QoS (where a circuit network could carry only 30). Data, which can sustain much

higher delays than the voice, and which has much more erratic demand probabilities, is packed

into the 65-unit virtual data buffer in such a way that 130 voice-sized data sessions are occurring

simultaneously.14 In this state, the link has 5 units free, and so if necessary it could either expand

its voice service bandwidth to accept several more voice calls, or accommodate up to 10 more

data sessions.

SINGLE SERVICE

It is straightforward to apply Denardo & Park’s routing method to single-service ATM

networks. In addition to average duration and arrival rate, each VC is specified by QoS

requirements and effective bandwidth that determine the maximum number of calls that can be

14 In reality, commercial providers of internet Digital Subscriber Lines will oversubscribe many times the capacity
of a link. Unless a customer pays the hefty premium for a guaranteed data rate, they may pack as many as a dozen
300kbps subscribers, for example, onto a single 300kbs link. Due to usage patterns, in practice the service does not
substantially degrade in such an oversubscribed condition, and users usually get the full 300kbps they expect.

12

accommodated with a given capacity. Thus, we simply substitute the effective capacity of each

link for its nominal capacity in the Erlang probability, and then the Denardo & Park method

yields an optimal routing method for a VC of our choosing.15

MULTIPLE SERVICES

In the case of a link carrying multiple services, Ross derives a steady-state distribution

from which we can derive the blocking probabilities. Ross refers to the problem of

accommodating multiservice calls to a link as the stochastic knapsack. If k services can place

calls on the link, we need to consider the set of service levels the link can accommodate. Let kb

be the effective bandwidth of service k, and kn the number of service-k calls in progress on the

link. We are interested in the set }:{ TnbnS ≤⋅= . In this case, Ross gives the steady-state

probability of Sn ∈ by

()∏
=

=
K

k k

n

nG
n

k

k

k

1 !
1

)(µ
λ

π , where the normalizing factor is
()∑∏

∈ =

=
Sn

K

k k

n

n
G

k

k

k

1 !
µ

λ

.16

The blocking probability for service k on a link of capacity T becomes

kk bTnbn −>⋅= ∑ ,)(πρ .

Because these expressions can be prohibitively large for even moderate networks, Ross17

provides a recursive algorithm for calculating blocking probabilities of this form in time linear

with the capacity T and number of services K. Ross also gives an even simpler approximation

for blocking probabilities that converges to the true values as T increases, as well as other

efficient algorithmic methods.18

A few considerations can rapidly complicate this picture. For example, we have assumed

that the market for network services is efficient—i.e., that each call generates revenue equal to

15 The situation is complicated slightly when considering a multi-service network carrying services with very
different QoS properties. The mechanics of multiplexing such calls are outside the theoretical interest of this paper,
but are analyzed in Ross, Chapter 5. Also, note that QoS on two-link routes may be only half that on one-link
routes. I.e., if each link can delay a cell for one microsecond, a cell traversing a two-link route might be delayed for
two microseconds. Although, strictly speaking, this has an impact on the cost of using two-link routes since it takes
more bandwidth on each link to ensure the exact same QoS as on a one-link route, this probably does not need to be
included in our model since a degradation in QoS of this caliber is not catastrophic in practice.
16 Note that this expression reduces to the Erlang probability if there is only one service. Note, also, that a closed-
form expression can be derived for services of continuously variable size (see Ross, Chapter 2.8). The normalizing
constant, G, is especially amenable to multidimensional Monte Carlo summation.
17 See Ross p.25, Algorithm 2.1.

13

the revenue forgone by accepting it. However, in a multi-service network it is possible that the

revenue rates per unit bandwidth consumed for different services will not always satisfy this

property, and thus an arbitrage opportunity exists for the routing policy designer (albeit, a

computationally expensive one19) who may want to block cheap calls more often than they

would otherwise be lost. Note, for example, that the probability a large call will be blocked is

greater than the blocking probability of a small call. Therefore, it may be preferable to reject a

small call that would otherwise be accepted in order to keep reserve bandwidth open for a more

efficient large call. Fortunately, using Denardo’s model, it is not difficult to account for revenue

disparities if we multiply the cost measures, iC , by the expected revenue of each call, w. In that

case, we reject a call k on route r only if its expected revenue,
k

kw
µ

, is less than rCw ⋅ .

In general, there are economies of scale to each service that need to be considered. I.e.,

as more and more service-k calls are packed into a link, the rate of increase in bandwidth

required to maintain QoS decreases. While these gains can be enjoyed automatically in a single-

service ATM network, there are no simple methods for accommodating this fact into a multi-

service network with the dynamic routing policies considered here, since the routing policy

cannot determine how many service-k calls are in progress on a link at any given time.

The routing method of Denardo & Park not only generates optimal policies for circuit

networks, but is also applicable to other networks. This paper has shown how it is readily

adapted to ATM networks, including the problem of routing multiple services. This suggests

that it is widely applicable to other networks that have reasonable behavior and tractable

expressions of blocking probability on a link.

18 Ross, p.49; also Chapter 3.
19 See Ross, Section 4.3 for a dynamic programming solution; Section 5.7 for approximation methods.

14

References

Gerald R. Ash, 1998. Dynamic Routing in Telecommunications Networks. McGraw-Hill, New
York.

Eric V. Denardo & Haechurl Park, 1998. “Efficient circuit switching: routes ranked by cost.”
Unpublished manuscript.

Keith W. Ross, 1995. Multiservice Loss Models for Broadband Telecommunications Networks.
Springer-Verlag, London.

Variables

A Actual arrival rate of calls
α Node-pair

kb Effective bandwidth of service k

iβ Probability of losing a call given that it was blocked on link i

iC Cost of link i

D Cumulative effects of rerouting
δ Routing policy

iE Expected increase in blocking rate if another call is accepted on link i now

f(A) Transformation of arrival rates by a policy
Γ Reroute matrix—traffic increases across the network of adding a call

),(sriγ Probability a call blocked on route r due to link i is completed on route s

i A specific link
K Number of services
k A specific service
L Number of links

)(riΛ Rate at which call attempts are blocked on route r because of link i

λ Raw arrival rate of calls
M Period of cycle in cyclic routing policy
1/µ Mean call duration
N Number of calls in progress on a link

)(krOδ Probability of a particular route being used under a given policy

P(r | A) Probability route r is blocked given arrival rates A
)(rQi Probability a call blocked on link i was made through route r

iR Routes containing link I

r A route
ρ Erlang probability – the blocking probability on a link with T and A
T Capacity of a link

iτ Expected increase in loss rate if another call is accepted on link i now

